
ø4

ø4
R3

11

193

Part 12

Note: excludes the second half of this arti-

cle, which consists of the beginning of the

Etch Folder. The material on the Etch Fold-

er, which appeared in MEW issues 214 to

218 is now contained in a single document.

©

All text and images copyright of

Marcus Bowman

except where stated otherwise.

2 •

Part 12
In this part of the series, we look at interpola-

tion. Originally, the article then included the

first part of the material on the Etch Folder

project. This was done for editorial conveni-

ence, to fit the space available. However; it

makes more sense to collect all the material

for that project in one place, so it now appears

in a separate document.

TIME IS MONEY

It’s often said that time is money, and I sup-

pose that’s true, at least in industry. The NIST

core software at the heart of Mach3 was,

of course, written for industrial use more

than anything else, so it takes a pragmatic

approach to movements of the Controlled

Point (CP).

So far, we have dealt with direct MDI com-

mands and small programs, with just a few

lines of code. That’s fine, and we will contin-

ue to look at how much can be done with

some very simple short programs, because

there is much to learn from that.

But the more ambitious we become, the

more we need to be able to have our CNC

software process large numbers of instruc-

tions and significant quantities of data.

Bearing in mind that it takes a finite time

to execute an instruction and make a cor-

responding movement of the CP, that sug-

gests some programs will take a very long

time to run. In fact, even short programs

are capable of generating huge numbers of

movements and requiring the machine to

run for ages.

Industrially, that represents a significant

cost, and in the home workshop it is prefer-

able if the machine stops running before we

fall asleep, so there has always been a need

to make pragmatic compromises in what

the machine is actually being asked to do.

One of those compromises is about ‘neces-

sary’ accuracy.

There is always the assumption that CNC

programs and machines are super-accurate,

but that is not necessarily the case. Even if

they were, that doesn’t mean they provide

a perfect and workable solution for all jobs.

When a CNC program like Mach3 runs, the

core interpreter looks ahead at what moves

are coming up next. In fact it looks ahead

several commands. Then it tries to figure

out the best way to make those moves.

One way to proceed is to assume the pro-

grammer knew exactly how the CP should

move, and simply make each of those

moves. Making a move involves mechanics,

though, and that’s where things begin to

get less straightforward. Mechanical parts

have mass and if they are moving they have

momentum, which is the tendency to want

to keep moving in their present direction. To

get a slide moving from rest, the program

needs to accelerate the slide as specified in

the initial settings for the steppers; then it

needs to maintain a constant speed during

the move, until the end is within a specific

number of steps; then it needs to decelerate

so that the slide comes to rest at the point

specified in the command that is being exe-

cuted. That’s all fine, but in real life one com-

mand follows another, in a program, and

there is little point in decelerating towards

an end point if the next command will sim-

ply accelerate, move at constant speed then

decelerate in more or less the same direc-

tion. There is a significant efficiency gain,

both in terms of time saved and in accuracy

achieved, by looking ahead for a few com-

mands, and seeing where the accelerate-

decelerate-accelerate sequence could be

omitted or at least modified. That seems like

common sense, and it is.

But there’s a bit more to this. The points the

CP will visit during a program constitute a

path. In fact, the CP may follow more than

one path during a program, so for our pur-

poses, a path is a continuous sequence of

points between an initial point (the start of

the path) and a terminal point (the end of

the path). If you were drawing a shape to be

machined, a path would be a line you could

draw without lifting your pencil. When you

have to lift the pencil, that’s the end of the

path.

Paths are a useful concept because we can

turn the process on its head and ask wheth-

er there is a path between a set of points we

want the CP to visit, and, if there is, whether

we can optimise the path by taking some

shortcuts.

Take the shape shown in fig 57 for example.

It’s a star shape and there is an obvious path

from one point to another around the out-

line, in and out repeatedly. If you imagine the

points without the line (fig 58), the question

Fig 57: A star shape and the corresponding path

between the points.

Fig 58: Points on a shape, which need to be joined to

form a path.

 • 3

is: can we find an optimum path between

those points? Of course we do want to pro-

duce that shape, so we can’t join the points

in any old order, but thinking mathemati-

cally, can we approximate to the shape with-

out necessarily having to visit each point

exactly? If we can get reasonably close to

each point without having to land exactly

on each point, we can avoid the abrupt

changes of direction and remove some of

the accelerate-decelerate cycles or at least

reduce their effect a little, and speed up the

machining process. One of the other effects

of the accelerate-decelerate sequence is

that our carefully calculated optimum cut-

ting speed is varying during those periods,

and that variation in speed may mean a

poor cutting action and a varying quality of

finish on the work. So even without optimis-

ing the path, we are in danger of reduced

quality. In the real world of machines, there

are lots of necessary compromises, and this

is one of them.

Back to our points

Smoothing out the potential path just a lit-

tle, and removing the restriction that the

CP has to visit each point precisely, gives a

range of increasingly rounded paths, some

of which are shown in fig 59.

The mathematics of interpolation is fasci-

nating, and if I understood anything of it I

would gladly share that knowledge with

you. Interpolation is the process of fitting

the best path to a set of points, and that’s

what we are trying to do here. Visiting each

precise point is one way, but going close to

each point, without necessarily having to

land exactly on it, can produce a path which

is a better match for the need to smooth out

the variations in acceleration and decelera-

tion, so achieving a more constant and more

optimum cutting speed (i.e. the speed of the

CP between points on the path).

For some jobs, we need to visit each point

exactly, using what Mach3 calls Exact Stop

mode. For other jobs, we can allow a defined

amount of deviation, in an attempt to get

close to a constant cutting speed, using

Constant Velocity mode.

There is an up side and a down side to both

of these modes, and although you might

think Exact Stop is the obvious mode to use,

that’s not always the case.

If you are running a job where a precise

shape doesn’t matter, or you are doing a

preliminary operation involving sweeping

cuts across and area to be cleared, Con-

stant Velocity makes more sense. Where

you require a precise shape, but are willing

to live with a compromised cutting speed,

Exact Stop mode might be the best choice.

It all depends on what you will do with the

shape (fig 59). If the workpiece requires a

precise outline, perhaps to mate with anoth-

er part, Exact Stop might be best. If you are

making 100 of them, and the outside shape

has a wide tolerance, Constant Velocity has

a lot to commend it.

Fig 60 shows one line of an engraving pat-

tern, and the overall pattern comprises 500

similar lines. Constant Velocity allows some

deviation from the path, but if all lines are

the same and are cut with the same devia-

tion, who will notice? At 500 repetitions,

there may be a substantial saving in time,

and the surface finish might be a little better.

To invoke Exact Stop mode, use G61

To invoke Constant Velocity mode, use G64

Only one of those commands can be in

effect at any one time, but the modes can

be changed from within a program, so you

could do a set of commands while G64 is in

effect, then switch to Exact Stop mode using

G61 and issue some other commands.

The path control mode commands G61

and G64 are modal commands. That means

only one of them can be in effect at a time,

but that command will stay in effect until

it is changed. There is a note on this in the

Mach3 manual, in section 10.6. Mach3 uses

several modal groups, and they are listed in

the manual in the table under 10.6.

The best way to treat the path control mode

commands is to set the default in the Mach3

menu: Config > General Config

The second column from the left has

an area entitled Startup Modals, which

we have met before, and within that a

choice of Motion Mode settings (fig 61).

Choose your preferred default, Exact Stop

or Constant Velocity. My own preference is

Exact Stop, especially since we can change

to Constant Velocity at any time. It’s just that Fig 59: Possible paths between the points frm fig 58.

Fig 60: One line of an engraving pattern.

Fig 61: The Motion Mode area of the Config > General

Config menu.

4 •

when Mach3 starts up, it invokes the mode

set in this Config panel. Setting the mode

here means we know how Mach3 will treat

Path mode unless we use the other com-

mand.

If you look now at the Initialisation Sequence

suggested for the start of all programs, in

MEW 209, you can add G61 (or G64) to that

sequence. That way, we know that if I write

a program and you subsequently run it on

your machine, you should get a predictable

result because I have set the motion mode

appropriately.

So the Initialisation Sequence then becomes:

G17 G21 G40 G49 G54 G61 G80 G90 G91.1

G92.1 G94 G98

Now look at the Config > General Config

menu screen, and the section just above

where you set the default motion mode.

There’s a box for an Initialisation String, and

it probably just has G80 in there, to begin

with. You could always enter our Initialisa-

tion Sequence in there; then you would

know exactly how the software should

behave, when you start it up ready for work.

If you are running a program, it won’t mat-

ter, because you will include the Initialisa-

tion Sequence in every program, but if you

are using MDI commands, it is a comfort to

know that all will be well in the digital world,

right from the word go.

There’s a check box above that area, and it

allows you to specify whether Mach3 will

carry out the Initialisation String every time

you do a Reset. That might be a good idea,

because then you know how the machine is

supposed to behave afterwards.

