
ø4

ø4
R3

11

193

Part 11

©

All text and images copyright of

Marcus Bowman

except where stated otherwise.

2 •

Part 11
In this part of the series, we continue looking

at circular paths but find out how to re-use a

routine for milling a circel at 0, 0 in another

place. Then we progress to packaging code in

subroutines so that it can be used repeatedly.

THE USEFULNESS OF A CENTRE AT (0,0)

Now that we know how to make the Con-

trolled Point (CP) move in a circular path, we

can machine circles, cut circular pockets and

peripheries. All very useful.

But some jobs use the same circular path

more than once, and it would be handy to

be able to use the same path in a different

position.

The G2 and G3 commands describe a circu-

lar path and take the form

G2 X~ Y~ I~ J~ Z~ where ~ is replaced

by a number.

X~ and Y~ are the co-ordinates of the End

point of the circular path of the CP, and the

offsets I~ and J~ are calculated from the

co-ordinates of the Current Point and the

Centre of the circular path. Changing the

centre but keeping the same radius will

mean the Current Point and the End Point

will also change (not surprising, since the cir-

cular path is to be in a different place) but it

will not change the I or J values, because the

circle has the same radius, so the distance

from the Centre to the start (the Current

Point) will be the same no matter the loca-

tion of the circle.

If the cutter is moved to the right, to touch

the periphery (fig 52):

the I value will be: Xcentre – Xstart, which is

the same as the radius of the path of the CP

(although it may have a negative sign); and

the J value will be 0 because Ycentre has the

same value as Ystart .

To create a circular path to machine a circle

of radius 12mm with its centre at (0, 0), by

using a 7mm radius cutter (14mm diameter)

running inside the circle (fig 53), requires the

commands:

(ignoring Z for the moment)

G0 X5 Y0 (Start point)

G2 X5 Y0 I-5 J0 (5, 0 is the End point as well)

Fig 52: An initial move

takes the cutter to

the right, to touch the

periphery of the circle.

Circle to be milled

Path

Circle to be milled

Path

5

(0, 0) (5, 0)

Fig 53: Positioning the

7mm radius cutter so that

when it follows the path

shown in red it machines

a circle of radius 12mm.

 • 3

If the same path is to be used to machine an

identical circle with centre at (10, 20), using

the same cutter, (fig 54) the commands

would be:

G0 X15 Y20 (Start point)

G3 X15 Y20 I-5 J0 (15, 20 is the End point as

well)

The same path for the same circle with its

centre at (20, 40) would be:

G0 X25 Y40

G2 X25 Y40 I-5 J0

So it’s only the centre that changes, and

that only affects the X and Y co-ordinates

of the Start and End points (which are the

same point, for a full circle). The I and J values

remain the same.

In fact, the X value is always the X co-ordi-

nate of the centre plus 5, and the Y value

is always the Y value of the centre, so eve-

rything is simply offset by the X and Y co-

ordinates of the centre of the circle.

That’s handy, because the G92 command

can apply an offset to the whole co-ordinate

system.

The command takes this form:

G92 X~ Y~ Z~

and it creates an offset to the whole co-ordi-

nate system, so that the Current point ends

up with the co-ordinates given in the com-

mand after X, Y and Z.

G92 X0 Y0 Z0 makes the co-ordinates of the

current point X0 Y0 Z0

So if there is no G92 offset in effect,

G0 X10 Y20 Z15

G92 X0 Y0 Z0

effectively makes the current point at X10

Y20 Z15 take the co-ordinates X0 Y0 Z0

G92 is cancelled using the command G92.1

(There are 3 ways of cancelling the G92

command, and they have different effects,

but we will use G92.1 for the moment.)

If there is no G92 offset in use,

G0 X10 Y20 Z15

G92 X12 Y33 Z0

makes the current point (X10 Y20 Z15) have

the co-ordinates X12 Y33 Z0

G92.1 removes the offset and makes that

point X10 Y20 Z15 once again.

This is a useful command, especially for

paths centred on X0 Y0, so we can use it to

cut the same circle, using the same com-

mands, but in a different place (fig 55).

t works like this:

Set the centre of the first circle to X0 Y0

(probably by setting the Work Origin there).

Machine that first circle.

Move the CP to where the centre of the sec-

ond circle should be.

Use G92 X0 Y0 to set the X and Y co-ordi-

nates to zero at that point.

Use the same commands as last time, to

machine the circle.

Cancel the offset by using G92.1

Move the CP to where the centre of the third

circle should be.

Use G92 X0 Y0 to set the X and Y co-ordi-

nates to zero at that point.

Use the same commands as last time, to

machine the circle.

Cancel the offset by using G92.1

The pattern is the same, no matter the num-

ber of circles. In fact, this works for all paths,

not just circular ones, so this is an extremely

useful command.

The co-ordinates of the centres of the circles

are all set initially in the “normal” co-ordinate

system, with no G92 in effect. The normal co-

ordinate system applies at all times, except

between the G92 and G92.1 statements.

Notice that, in the example, Z is not changed

because Z is not mentioned in the G92 com-

mand.

Omitting any reference to Z simply leaves it

as it was.

That would also be true for X and Y.

Any co-ordinate not explicitly mentioned in

the G92 command will not be altered.

Circle to be milled

Path

5

(10, 20) (15, 20)

Start point, and
End point of the path

Centre point
of the path

Fig 54: Using the same

cutter to machine the

same cirlce with a

different centre point.

First circle

Second circle

X0 Y0

Fig 55: These circles are identical except for the co-

ordinates of their centres.

4 •

CLOCK STAND SEAT

Here’s a real example of the use of G92. It’s

a very simple workpiece which requires two

circular pockets, 8mm deep, in different

places (photo 81).

The item shown is a seat for a clock stand,

and it has been cut from a sheet of 18mm

MDF. The seat is the top plate of a simple

clock stand (photo 82) and two screws pass

through the base, from below, and into the

lower two clock frame pillars, to hold the

clock mechanism firmly in place. Under the

head of each screw there is a large washer, to

spread the load. The length of each screw is

limited, though, and the original seat (still in

the clock case) was only 10mm thick, so the

recesses allow the screw heads and wash-

ers to reach the threaded holes in the frame

pillars.

The layout of the workpiece is as shown in

fig 56, and the Work Origin is set to X0 Y0

at the centre of the left hand ø24 x 8 deep

circular pocket. Photo 83 shows the setup

on the mill.

The recesses are 24mm in diameter, and the

cutter is an 18mm diameter router bit, so the

commands to cut the first circle are:

G0 Z10 (Safe Z)

G0 X0 Y0 (Centre of circle)

G0 X3 Y0 Z0.1 (cutter edge aligned with cir-

cumference)

G2 X3 Y0 I-3 J0 Z-2 (spiral cut)

G2 X3 Y0 I-3 J0 Z-4 (spiral cut)

G2 X3 Y0 I-3 J0 Z-6 (spiral cut)

G2 X3 Y0 I-3 J0 Z-8 (spiral cut)

G2 X3 Y0 I-3 J0 Z-8 (level cut)

G0 Z10

G0 X0 Y0

Now move the CP to the centre of the sec-

ond circle:

G0 X104 Y0

Create an offset to make those co-ordinates

X0 Y0

but leave the Z height unchanged

G92 X0 Y0

Use the same commands as shown above, to

machine the second circle.

Then cancel the offset

G92.1

Go back to the starting position

G0 X0 Y0

which should take the CP back to the cen-

tre of the first circular pocket. That’s a use-

ful check, because of the G92 offset is still

in effect the cutter will not move. It is only

when the offset has been removed that

Mach3 will recognise X0 Y0 as being the

original Work origin at the centre of the first

circular pocket.

Photo 84 shows the result.

The router bit should be run at over

12,000rpm but that’s unachievable on my

main spindle, so just run it as fast as you

can. The finish improves with speed, but the

lower speed is fine for this job.

G92 is a powerful command, if used with

care. It applies a global offset, so the values

of all co-ordinates are changed when G92 is

in effect. It is wise to cancel the offset at the

earliest opportunity, using G92.1

Our Initialisation Sequence (MEW 209)

already contains a G92.1 command, as a

precaution, just to make sure there are no

offsets in operation when a program runs.

Photo 81: The finished clock stand seat.

Photo 82: The simple clock stand.

R15

ø24 x 8 deep

190
30

220
104

90

30

Material: MDF 18mm thick

ø3 thru

4 mounting holes ø5 thru
Positions to suit frame
Countersink on reverse side

Fig 56: The dimensions of

the clock stand seat.

Photo 83: Set up ready to mill.

 • 5

Although this example only creates two

holes, G92 is not limited to single small

paths. Once in effect, it offsets all co-ordi-

nates, so a more complex path could eas-

ily be reproduced many times by using the

same method.

PACKAGING THE CODE

It is obvious that the last example used the

same lines of code more than once. That’s

fine, but it becomes a bit of a pain typing

the same commands more than once. Cut-

ting and pasting the whole block of com-

mands to machine one hole reduces the

typing, and the room for error, but leaves

us with a program which may work well,

but is difficult to read and to follow. We can

get around this quite neatly by creating a

subroutine, or block of code which can be

typed just once then used as many times as

required, afterwards.

To identify the section of code, it has an

identifying number at the beginning, and a

command at the end. Here’s what it might

look like:

O123 (The start of the subroutine with refer-

ence number 123)

----code to move the CP around a path-------

M99 (signals the end of the subroutine)

In O123, the O is a capital letter and the 123

is a number.

M99 is always the command used at the end

of a subroutine; the number doesn’t change.

Although we gaily talk about the G-code

language, and although the majority of

commands do begin with G, the O code

denotes a flow control command related to

the logic of the sequence of commands in a

program. There are M codes, F, S and T codes

too, so why we favour G is a mystery.

Reference numbers can be anything in the

range 1 to 9999.

To avoid confusion, subroutines go after the

M30 statement at the end of a program so

they do not appear in the normal flow of

commands in the main program.

So our code to machine the circle (above)

can be put into a subroutine like this:

O123 (Subroutine to machine a circular

pocket centred at the Current Point)

G92 X0 Y0 (make the current point X0 Y0)

G0 X3 Y0 Z0.1

G2 X3 Y0 I-3 J0 Z-2

G2 X3 Y0 I-3 J0 Z-4

G2 X3 Y0 I-3 J0 Z-6

G2 X3 Y0 I-3 J0 Z-8

G2 X3 Y0 I-3 J0 Z-8

G0 Z10

G0 X0 Y0

G92.1 (Remove offsets and restore the origi-

nal co-ordinates)

M99

To use a subroutine, use the command M98

P~ substituting the reference number of

the subroutine in place of the ~ character.

So M98 P123 would call up the code from

subroutine 123 and carry it out. When it has

finished (i.e. when the subroutine reaches

the M99 command) Mach3 returns to where

it was in the main program and carries on

from there.

The following program will cut two circular

pockets, one at X0 Y0 and the other at X104

Y0. The Work Origin is set initially to X0 Y0 at

the centre of the first circle.

<<Initialisation Sequence goes here>>

F200 (set feed rate)

S3000 (set spindle speed)

M3 (turn spindle on)

G0 Z10 (Safe Z)

G0 X0 Y0 (Centre of the first pocket)

M98 P123 (machine the first pocket)

G0 X104 Y0 (Centre of the second pocket)

M98 P123 (machine the second pocket)

M5 (spindle off)

M30

O123

<<put the code to cut the periphery here>>

M99

That has the same sequence as the pro-

grams we have used before, but the struc-

ture is neater and, as we will see, it allows us

to use other powerful techniques.

Using the subroutine is termed “calling” the

subroutine; so M98 P123 calls subroutine

123. It’s a computer programmer’s term,

really, but useful nevertheless, because it is

generally understood, at least in the world

of code.

Clean code

One of the important things about subrou-

tines is:

clean entry / clean exit

clean, in this case, meaning predictable.

That means the subroutine should begin its

movements from a predictable start point

(in this case, the Current Point), and it should

finish at a predictable end point (in this case,

the former Current Point).

The only exception to this rule is when we

have deliberately created just that: an excep-

tion. Even then, there must be a reason for

that, and the start and end points each time

the subroutine is called must be predictable.

The subroutine should leave no loose ends,

and should cause no unexpected effects for

Photo 84: The counterbores machined.

6 •

the rest of the program. That’s why the sub-

routine cancels offsets before it ends, so that

the co-ordinate system which was in effect

before the subroutine was called, is once

again in effect, and we can carry on in the

knowledge that where we are is where we

thought we were, and the CP has the same

co-ordinates as before, within the same co-

ordinate system.

In practice, this means we need to consider

where the CP is before we call a subroutine,

and think about how to get to a suitable

position before the subroutine does it work.

Similarly, at the end we need to think about

where the CP will be and whether we need

to do some additional moves before con-

tinuing with the other parts of the program.

The more of this that can be done inside the

subroutine, the better.

In the subroutine shown above, we must

always take the CP to where the centre of

the circle will be, before calling the subrou-

tine. The subroutine immediately redefines

the Current Point, making it X0 Y0 by apply-

ing an offset. Note that G92 works out the

offset for itself.

As the subroutine finishes, it takes the CP

back to where it was when the subroutine

started, then removes the offsets so that the

CP has its original co-ordinates once more.

The subroutine causes no other effects, so

it is a clean subroutine with a predictable

entry and exit.

The main program could easily be extend-

ed to machine further, identical, pockets in

other places, so if you want to create a tool

holder with identical pockets, this would be

a good method of creating the holes.

If the code inside a subroutine describes a

different path, it can be as large or small as

you like; and it can be any shape you wish.

This technique is not restricted to circles or

any other specific shapes.

There are more examples on the website.

Getting a finish

The example fragments of code, above, use

G2 commands because that means the

teeth on the cutter, which is revolving clock-

wise (as viewed from above), bite into the

work as they are moving towards it. That’s

conventional milling.

Using the G3 command would mean the

cutter was still revolving clockwise (because

spindle direction is set independently of the

direction in which the CP is moving, using

M3 or M4 commands), while the CP motion

is anticlockwise. That would be climb mill-

ing.

Normally, we use conventional milling. That

would mean using G2 commands to cut

with the cutter inside the circle, cutting a cir-

cular pocket or an inside arc. G3 commands

are normally used to guide a cutter around

the outside of the work, because contact

is normally with the teeth on the opposite

side of the cutter.

Relative speeds make this a bit academic, in

my view, because if the peripheral speed of a

cutter is, say, 100,000mm/min (equivalent to

a ø10 cutter at 3000rpm machining alumin-

ium) and the feed rate is 200mm/min, the

speed at which a tooth will meet the mate-

rial for conventional milling is: 103,000mm/

min, and for climb milling 97,000mm/min.

Not a significant difference there, and well

within the kind of margins encountered

when trying to set that speed accurately.

Backlash does come into it, with climb mill-

ing acting to pull the slides in the “wrong”

direction, floating them away from firm con-

tact with a leadscrew.

However; there is no doubt at all that the

finish provided by climb milling is different

to conventional milling, and there is often a

noticeable difference in favour of climb mill-

ing.

One good approach is to use conventional

milling until the final finishing cut, and to

make that a light cut using climb milling.

That means cutting undersize, until the final

light finishing cut which will bring the job

to size and give it a fine finish. It’s a bit of a

footer doing this manually, but no bother at

all using CNC.

So, returning to our example of a ø24 pocket

and a ø18 cutter, move the cutter out just

a little less than the full distance, and cut

the pocket using a similar set of commands

as before. Then move the cutter out to the

final position and take the final cut. When

the last cut has been completed, move the

cutter away from the finished surface before

lifting it out of the pocket, to prevent a mark

on the wall of the pocket.

Here’s what a modified subroutine might

look like:

O123 (Subroutine to machine a circular

pocket centred at the Current Point)

G92 X0 Y0

(Use conventional milling for the roughing

cuts)

G0 X2.9 Y0 Z0.1

G2 X2.9 Y0 I-2.9 J0 Z-2

G2 X2.9 Y0 I-2.9 J0 Z-4

G2 X2.9 Y0 I-2.9 J0 Z-6

G2 X2.9 Y0 I-2.9 J0 Z-8

G2 X2.9 Y0 I-2.9 J0 Z-8

G0 X0 Y0 Z0.1

(Use climb milling for finishing cuts)

G0 X3 Y0

G3 X3 Y0 I-3 J0 Z-2

G3 X3 Y0 I-3 J0 Z-4

G3 X3 Y0 I-3 J0 Z-6

G3 X3 Y0 I-3 J0 Z-8

G3 X3 Y0 I-3 J0 Z-8

G0 X0 Y0 Z10

(Finally, remove the offsets)

G92.1

M99

