
ø4

ø4
R3

11

193

Part 1

©

All text and images copyright of

Marcus Bowman

except where stated otherwise.

2  •  ﻿

Part 1
This series of articles starts from fundamentals

and covers aspects of CNC programming and

machining which will allow you to produce a

wide range of work on your CNC machine. The

series is not specific to one make or model of

machine tool, but it does feature Mach3 and

Vectric software throughout.

There is a support website for the series at

www.cncintheworkshop.com

Some things are changing quickly in the

home workshop, and the last 10 years or so

has seen a considerable increase in interest

in smaller CNC machine tools. Richard Bar-

tlett published some interesting early arti-

cles, but the first really major CNC project

for home workshop users was probably the

articles on building a CNC milling machine,

by Peter Rawlinson in MEW from September

1998 to February/March 2000, We have seen

significant progress since then, with lots of

home conversions of milling machines,

and a smaller number of lathe conversions.

Leaving aside the large industrial machines,

there are some good small or medium

sized CNC mills on the market now, with a

smaller number of commercially available

CNC lathes based on conventional manual

layouts, a steady supply of second hand ex-

education slant bed lathes, and a full-blown

CNC slant bed lathe of a size suitable for the

home workshop is just around the corner.

For those interested in developing or using

CNC in the home workshop, this is an excit-

ing time.

This series of articles sets out to give you a

good grounding in the skills required to set

up and use a CNC machine tool, and to take

you to the stage at which you feel confident

in using your CNC mill or lathe to produce

real work. Our ambition will not be limited to

simple workpieces, and the series will look

at what is required for some of the more

complex machining tasks.

We will start with the absolute basics, in this

first article, and build skills and knowledge

from there. Supporting resources will be

indicated as we go along.

Let’s be clear about a couple of things,

though.

This series is not an attempt to convert eve-

rything in the workshop to CNC. Nor is the

intention to make MEW into a computer

magazine. Traditional manual skills, wheth-

er working at the bench with hand tools, or

operating a lathe or mill manually, are not

superseded by CNC. In fact it would be true

to say that a real understanding of the fun-

damental aspects of machining, whether

by CNC or manual methods, is an essential

component, and for most of us that is based

on experience in making things manually.

There are times when CNC makes a tremen-

dous difference to speed and efficiency or to

what can be produced because of the com-

plexity of a machining operation, and other

times when manual skills will be required

to finish a workpiece by doing something

which is better done by hand, or cannot be

done by CNC. This series is not an attempt

to say that CNC is the be all and end all. I do

believe, though, that a good understanding

of what CNC can accomplish, in a practical

way, will benefit everyone, even if, in the end,

you do not wish to pursue it in your own

workshop.

Computer Numerical Control (CNC) is a

loosely applied term, but CNC is part of a

manufacturing system, which means it is

one element in a set which forms the whole

of the manufacturing sequence. Although it

is interesting to consider a CNC machine as

a tool in its own right, it is only really useful

as part of a system, so we will take a system

view, in this series, and look at all the ele-

ments required to manufacture a part.

Workflow is not something we talk about

very often, in the home workshop, but we

frequently use the concept when we tackle

a job. Workflow is simply the method we use

to take a piece of raw material and turn it

into a finished article. It is the steps we take,

and the methods we use, to do the work

that’s required. For a straightforward one-

off job, we may use a few simple operations,

like a turning operation, some filing, and a

cut with a hacksaw. But most of us know

quite well that a workshop project can easily

involve a considerable time in planning the

best way to do a job, before actually doing

it; and some jobs must be done in a specific

order, otherwise we end up not being able

to grip the work, or we foul a cutter or are

left with an impossible machining setup.

For repetition work, workflow is important

to optimise the manufacturing process and

allow us to do the work efficiently.

Preceding all of that is the design process,

Photo 1: A plinth for a

vase

﻿  •  3

and the need to consider manufacturability

as we create a design. It is surprisingly easy

to design parts which cannot be manufac-

tured easily, if at all. Many of the commer-

cially available castings we might use in

the workshop have extra bits cast into the

pattern. These form chucking pieces, and

although they are not required on the fin-

ished article, they are needed to allow the

part to be gripped in a chuck or clamped to

a mill table for the rest of the workpiece to

be machined. They are the result of consid-

ering manufacturability at the design stage

(or sometimes modifications as a result of

bitter experience…).

Throughout this series, we will look at appro-

priate methods for each of the 3 main stages

in our design – plan – manufacture work-

flow. Some of these will be manual, and oth-

ers will make use of appropriate software.

Fig 1 shows these elements of workflow.

In the modern home workshop, design can

be carried out at least partly on the comput-

er, using Computer Aided Design (CAD) soft-

ware which will allow the part to be drawn

and the design to be tested and finalised

before cutting any metal. Information from

the CAD program can then be used to ena-

ble Computer-aided Manufacturing (CAM)

which makes use of CNC machines to pro-

duce finished workpieces. The key to this is

software for CAD, CAM and CNC, along with

a compatible CNC machine.

We do not always need to use all of this

software in the home workshop, but we

will need to carry out all of those stages.

For some tasks, it is quicker and easier to do

some of the stages manually, but in other

cases it is impossible to do without all the

elements of the full system.

Photograph 1 shows a simple piece of work

based on simple shapes, which can be

designed on the back of an envelope and

planned on a postcard, then cut on a CNC

mill. In practice, that’s exactly what hap-

pened. I had some turned vases which need-

ed simple bases to sit on, to complete the

effect I wanted to achieve (photo 2). Grab-

bing a sheet of material, I drew appropri-

ate circles around the existing vases, wrote

a few lines of instructions straight into the

CNC program which controls my mill, and

cut the shapes using one cutter to produce

a concave edge around the shapes, and an

end mill to cut the vertical sides, releasing

the shapes from the sheet. The advantag-

es of using CNC for this job were that the

final cut gave me a finished object which

only required the edges to be burnished

by hand, but the program cut three bases

of the same size, then, with just a few extra

instructions cut a single larger base, and all

without moving the workpiece (photo 3).

Even using CNC for just one of these shapes

would have been quicker than cutting it by

hand, because the shape was so accurately

cut. Yes; the job could have been done using

a rotary table in a manual mill. It would not

have been any easier, though; and it would

have taken much more time to set up the

blanks before machining each plinth.

Photo 4 shows an engraving which could

be drawn by hand, assuming a high degree

of artistic ability and a lot of time and con-

centration, but could not be planned with-

out the aid of sophisticated software. Once

planning has been completed, cutting

the design using a CNC machine is quite

straightforward. Lacking years of practice

in hand engraving, I can’t think of a way of

doing this manually, without an engraving

machine. Even then, the job would have

required some means of using the sketch to

guide the cutter, and that introduces a sig-

nificant element of variability. In this case,

CNC is much quicker and much more reli-

able.

Design Plan Manufacture
Manually create
a design
on paper

Computer Aided
Design
(CAD)

Manually work out
how to make
the object

Computer Aided
Manufacture
(CAM)

Manually machine
the workpiece

Computer
Numerical Control
(CNC)

Fig 1: Three main stages in CNC workflow

Photo 2: The plinth in use

Photo 3: The setup for machining 4 circular plinths

Photo 4: An engraving of a flower

4  •  ﻿

In this series, we will consider the three ele-

ments required for a successful CNC system

in the home workshop: software for CAD,

CAM and CNC; computer hardware for CNC

control of a machine tool; and the machine

tool hardware and electronics. We will

begin with milling machines and progress

to lathes.

COMPUTER CONTROL

From early beginnings in the 1950s, CNC

systems have evolved through proprietary

industrial systems to the present day when

users in the home workshop can choose

from a range of ready-packaged systems or

general-purpose control software.

Early industrial automation systems were

mechanical, and were based on cams which

moved parts of a machine in specific ways,

and the cam-auto lathe was common in fac-

tories.

The next step was Numerical Control (NC), in

which servo motors controlled by electron-

ics moved machine slides to positions speci-

fied by holes punched in paper tape.

Finally, as computer systems became more

widely available, Computer Numerical

Control (CNC) allowed more flexible con-

trol of slide movement by cutting the time

required to create punched paper tape and,

latterly, adding many user-friendly features

to the process of programming and control.

A lot of the early development work for NC

and CNC systems was done by universities

and military research and development

teams, and there were early moves to stand-

ardize the way the systems worked, leading

to the RS274 standard for commands to con-

trol these machines. This led on to the Next

Generation Controller (NGC) project by the

American National Institute for Standards

and Technology (NIST) which resulted in a

set of standards for the RS274/NGC control

language interpreter and produced a core

set of software for controlling the move-

ments of the axes of a machine tool. That

core software lies at the heart of much of the

CNC control software currently in use indus-

trially, as well as in the home workshop. Any

specially written custom control systems

should conform to the RS274/NGC stand-

ards so that all CNC systems should respond

in a similar way to a set of standard com-

mands. There is room, though, for systems

to add facilities or to interpret unassigned

commands in a specific way, and commer-

cial systems inevitably differ in detail as

manufacturers attempt to sell systems with

added bells and whistles.

In the home workshop, the two main pieces

of general purpose CNC software are Mach3

and LinuxCNC (formerly known as EMC or

EMC2). These both respond to the core set

of RS274/NGC commands, but both pro-

vide a user-friendly interface on screen, to

make the system easy for ordinary humans

to use. Both systems have developed over

the years, and have gradually taken different

routes, although they both still respond in

a similar way to the same core RS274/NGC

commands. Other software systems are

available, and they do essentially the same

job, so it is relatively easy to change from

one to another.

Mach3 was developed by ArtSoft and is a

commercial product available as a limited

demo version or a fully licensed version.

LinuxCNC is Open Source software available

free under a GPL licence.

Mach3 runs on a PC under the Windows

operating system and uses easily accessible

menus to allow the software to be config-

ured in various ways, to suit the machine it

is controlling, or to enable common tasks to

be carried out quite easily.

LinuxCNC runs on a PC under the Linux

operating system (and UBUNTU 10.4 in

particular) and has evolved into a highly

capable programming system. It does,

though, depend on a familiarity with Linux,

and although arguably more flexible than

Mach3 in some ways, that flexibility can only

be fully achieved through a greater knowl-

edge of software and computing skills.

I enjoy the LinuxCNC programming capa-

bilities, but we will say no more about

that system for the moment, and focus on

Mach3, simply because it is easier to install

and setup. Mach3 is a commercial product

and can be obtained as a demo version at

no cost, to allow you to test whether it will

work on your computer and machine tool.

The demo version is currently limited to 500

lines of G code (mill) or 50 lines of G code

(lathe), so it is possible to run enough of a

program to make sure it suits your purpose

before committing to a licence. You should

note, though, that 500 lines of program is a

real limitation on the size and complexity of

the program you can run on a mill, so you

will need to buy a full licence sooner rather

than later.

Several of the complete CNC mill packages

currently available provide an installed copy

of Mach3, either as the demo version or as a

full licensed version. Sherline, though, pro-

vide LinuxCNC, although it is easy enough to

control a Sherline CNC machine tool using

Mach3.

I have no axe to grind, and regularly use both

LinuxCNC and Mach3. Mach3 is, however,

the more commonly used system at present.

Both software systems continue to evolve,

with work underway on a newer version of

LinuxCNC, and Mach4 on the horizon.

COMPONENT PARTS OF A CNC SYSTEM

In essence, a CNC system comprises a

machine tool with arrangements to move

the position of the tool in relation to the

work; and a computer system with software

to control those movements. The user pro-

vides a set of commands which the com-

puter system interprets to produce control

signals for motors attached to the machine

tool, to move the work or a tool or both.

We will not get involved in Computer Sci-

ence, but there are a few key concepts which

should help clarify some aspects of Mach3,

﻿  •  5

so we will dip our toes in, very gently, to the

shallow end of what goes on under the bon-

net of a computer used for CNC.

Fig 2 shows a simplified view of the com-

ponent parts of the software in a computer

system, and they have direct relevance both

to CNC systems as a whole, and to Mach3

and similar software. In broad and simplis-

tic terms, the user uses “high level” software

packages such as word processors or games

or CNC programs. Those programs use the

Operating System (OS) to run within the

computer system.

The heart of the operating system is the ker-

nel which controls all the hardware resourc-

es in the computer – the memory, the CPU,

mouse, keyboard, and peripheral devices.

Every computer motherboard has a Basic

Input/Output System (BIOS) which is con-

tained in a chip which runs when the com-

puter is switched on. A BIOS is specific to one

make and model of motherboard, and its

first task is to load the kernel into the com-

puter. Most kernels are designed to work

as part of a specific Operating System (OS)

such as a particular version of Windows or

Mac OS or Linux, and are designed to pro-

vide “abstraction” between the OS and the

hardware in the computer system, relieving

the rest of the OS, and all the other software

in the computer system, from having to

deal with the excruciating detail required

to control the hardware. Instead, the rest of

the OS simply passes control requests to the

kernel. The kernel uses device drivers (little

bits of software specific to particular hard-

ware devices) to control individual pieces

of hardware in the system. You may have

come across some of these device drivers,

especially if you use the Windows OS. Each

time you add a new piece of hardware to a

computer system, the OS requires a device

driver for that hardware.

As far as the human user is concerned, soft-

ware packages such as Mach3 are “high-

level” programs which are easy for the

human operator to use, but they need to

communicate with the kernel, because it

is that kernel which will enable the pack-

age to send signals out of the computer

to control a machine tool. High level pro-

grams hide the detail of the manipulation

of the CPU, memory and peripherals from

the user by letting the OS and the kernel

handle those processes. To set Mach3 up

to control a specific machine we will need

to enter appropriate settings within Mach3

to allow that high level package to commu-

nicate effectively with the kernel, to make

sure the correct signals are sent out to the

peripheral motors or received from the sen-

sors on the machine. On a machine supplied

as a complete package along with software,

those settings should have been entered

as the machine was commissioned, before

delivery. They can be altered later, though, if

need be. On a home-constructed machine,

it is up to the user to enter appropriate set-

tings. Fortunately, it is not difficult.

To complete the picture, a real-time OS is one

which is designed to send or receive con-

trol signals or sensor inputs fast enough to

control a machine tool so that the required

movements occur at the appropriate times.

It wouldn’t be much use if a tool arrived in

position after the workpiece had moved to

some other position. Some operating sys-

tems are designed to operate in real-time,

while most others do their best, succeeding

to varying degrees. This is a significant con-

sideration, and, in the real world, it requires

some awareness of the problem and some

reasonable compromises to achieve a per-

formance close enough to real-time to con-

trol a CNC system with sufficient accuracy to

allow it to produce accurate work. One strat-

egy is to use an OS like Linux which can be

made to operate close to real-time, another

is to use a non-real-time OS like Windows

but take steps to make the signal handling

capabilities sufficiently close to real-time to

allow CNC systems to function.

Mach3 runs under Windows but goes to

considerable lengths to make the CNC con-

trol as close to real-time as possible. This

involves a lot of complex techniques, most

of which we can afford to ignore. Instead,

we can remain blissfully ignorant as we use

Mach3 as a high-level package designed to

be convenient for humans to operate.

Within a CNC software package, there are

some settings we can make to allow Mach3

to operate our specific CNC machine. Most

of these settings need to be made just

once, for a specific machine, but a few can

be altered from time to time, depending on

how we want the machine to behave. The

main purpose of the settings is to direct the

kernel to use appropriate connections to the

CNC motors and sensors, so they provide a

way for abstraction to take place. Once the

kernel has the settings, there should be no

need to change these unless the basic physi-

cal setup of the CNC machine, its motors and

sensors, changes. The settings are stored in

a file and each time Mach3 starts up it will

load the file and use those settings.

Most of the settings we will want to change

from time to time are not directly related to

the kernel, but relate to higher level func-

tions we humans can use to define the way

Kernel

O

pe
rating System (OS)

High Level Software

(Lo
w level software)

User interface

Signals
in and out

Fig 2: Component parts of the software in a computer

system.

6  •  ﻿

in which the software interprets the instruc-

tions we enter, like the extent to which the

CNC machine can deviate from the path we

have programmed, rounding corners, allow-

ing speed fluctuations, and other aspects of

the operation.

When we run the CNC software, we enter

commands to control the movement of

the CNC machine. The NIST core software

built into Mach3 interprets the commands

and turns those into instructions which can

be passed to the kernel to control the CNC

machine. The software allows co-ordinated

movement of the various parts of the CNC

machine, and that is why the fact that Win-

dows is not a real-time OS makes life so

challenging for Mach3, under the bonnet.

In fact, the key to the success of Mach3 is

the very cunning timer it creates within

the computer, so that signals are sent to

stepper motors or servos at a consistent

and nearly-real-time rate. This is far from a

simple undertaking, and requires Mach3 to

effectively bypass parts of the Windows OS

to create a timing system largely independ-

ent of Windows.

A TYPICAL CNC MILL

Most CNC mills in the home workshop

are easily recognisable as vertical milling

machines. It would be just as easy to control

a horizontal mill, but the vertical mill tends

to be more versatile, so that’s what we will

deal with, at least for now.

Vertical mills are typically either benchtop

mills in which the distance between cutter

and work is changed by moving the head

up or down, or knee mills in which the table

assembly moves up and down and the head

remains stationary.

For CNC it doesn’t matter. What is important

is the position of the Controlled Point (CP),

a specific point which defines the position

of the tool in relation to the workpiece. The

Controlled Point is usually a point at the

end of the tool, aligned with the vertical

axis of the spindle (photo 5). Moving the

table and/or the head moves the CP rela-

tive to the workpiece. Conventionally, the

movement of the CP is described using axes

labelled X, Y, Z, A, B and C. The X, Y and Z axes

refer to movement right and left, forward

and back, up and down, as shown in photo

6. The other 3 axes, A, B and C, can be flex-

ibly defined, depending on your machine,

and each can be either a rotary or a linear

axis. Where these are rotary axes, they are

defined as shown in fig 3 (rotary axes). For

our purposes, the A axis will normally repre-

sent rotary movement, typically of a rotary

table mounted either horizontally or verti-

cally, as shown in photos 7 and 8 (next page).

From a purely economic point of view, we

are unlikely to have two rotary axes in use

at any one time, so swapping a rotary table

from vertical to horizontal or vice versa will

be quite convenient. Because we are likely to

be using that same rotary table as an axis, it

can remain plugged into the same connec-

tor and be controlled by the A axis signals

no matter its orientation, horizontal or verti-

cal. We will leave B and C for the moment,

because four axes are quite enough for most

tasks. You should be aware that most CNC

software can simultaneously control and

make co-ordinated movements in up to 6

axes, because the NIST core software built

into most CNC software packages provides

that control.

Axes are moved by a motor which can be

controlled by signals from a computer or

other similar device. In practice, that means

Z

C Y

B

A
X

Photo 5: Controlled point at the end of a cutter. Photo 6: Vertical mill axes.

Fig 3: Mill axes reference letters.

﻿  •  7

a stepper motor or a servo. A stepper motor

is a brushless DC (direct current) motor

which is designed so that its shaft can make

small rotary movements called “steps”, with

a typical stepper motor being capable of

200 steps, each of 1.8 degrees, as it makes

a single full rotation of the shaft. Whereas

a conventional DC motor will spin as long

as power is applied, then coast to a stop, a

stepper motor will only appear to spin if

it is rapidly moved in a series of steps. So

although this is a rotary device, its rotation

can be accurately and repeatably controlled.

A typical movement may consist of several

complete rotations and a partial rotation, all

accomplished by making a series of steps.

Typically, a stepper motor is controlled using

two signals; a step signal to make the motor

take a step, and a direction signal to control

the direction of rotation. This means it is a

relatively simple task to write a program

to control the rotation of a stepper motor.

It is the kind of programming task typically

undertaken by students learning program-

ming, and it has become a popular task for

hobbyists and students using the Raspberry

Pi computer, the Arduino and lots of other

similar systems.

The signals from the computer need to pass

through some electronics on the way to the

stepper motor, to provide enough power for

the motor. This is called a stepper controller

and it contains the drive electronics.

Looking back to early CNC machines in the

home workshop, one of the problems was

that stepper motors tended to be on the

small size, and used relatively unsophisti-

cated electronic controls. Nowadays, power-

ful stepper motors are available at reason-

able cost, and there are standard tried and

tested electronic devices available to allow

accurate control. Collective experience has

taught us there are good solutions.

On my own mill, the stepper motors (photo

9) are size 34, rated at 480Ncm, meaning

they have a mounting flange of a particular

physical size (3.4 inches) and capable of a

specific holding torque (480Ncm) although

the turning torque drops off rapidly as the

speed of rotation is increased. There is a

trade-off in motor size and cost, and while

I favour larger motors which can loaf along

well within their capacity, they are more

expensive, and require larger power sup-

plies than smaller steppers.

The controllers (photo 10) are standard

Geckodrive units (model G201). In fact three

are rebranded Geckodrive units supplied

under a UK manufacturer’s brand name. The

fourth is a Gecko-branded unit.

The power supply is home made. The step-

pers run at up to 80 volts, and the power

supply can provide 78 volts at 30 amps, so

it is very much more powerful than most

smaller commercial units, and rather more

powerful than is required. This power sup-

ply has soft-start, over-voltage protection,

Photo 7: Creatng rotary axis A wrapped around the X axis. Photo 8: Creating rotary axis C wrapped around the Z axis

Photo 9: Stepper motor on the Y axis.

Photo 10: Controllers containing drive electronics.

8  •  ﻿

and current limiting, to prevent disaster and

to protect the electronic motor drive units.

The newest Geckodrive unit, the G203X, has

considerable protection built in, so that a

simpler power supply may suffice.

Many of the well-known suppliers now sell

powerful stepper motors which require just

a little less current, and ready-made power

supplies and control units are available to

match.

A servo does the same job as a stepper

motor, but incorporates both a motor and

an encoder which provides an error signal

when the servo has not reached the com-

manded position. Electronics in the servo

will continue to move the motor until the

commanded position is reached. Although

a stepper motor may receive a series of

step and direction signals, there is no way

of checking whether it has been able to

carry out those steps or whether the motor

has stalled, perhaps because a slide has

jammed. Under the same circumstances,

a servo motor will continue to indicate an

error until it finally manages to reach the

commanded position. In fact, the main

issue is likely to be whether a slide has been

moved to a particular position. Where there

is backlash in a feedscrew, and the control

software does not take this into account, any

reversal in direction will result in some lost

motion due to the backlash using up some

of the rotation of the feedscrew. The step-

per might carry out the required rotation,

but the slide will stop short of the intended

position. There are ways of dealing with

this, in software, but this needs to be set up

within Mach3.

For most small CNC machines, up to Bridge-

port size, stepper motors are a perfectly

good, and cost effective, way of controlling

movement, provided they are sufficiently

powerful for the task in hand. Servos are

more expensive and have more complex

drive electronics. There are, however, a cou-

ple of applications which can really only be

effectively achieved using small servos, and

these include sophisticated rotary axes, and

some lathe headstock applications, which

we will look at later.

COMPUTER

The computer system does not need to be

the very latest all-singing all-dancing model.

It simply needs to be as fast as is required to

control the parts of CNC machine as fast as

they needs to move. How fast is that? Real-

istically, a medium spec computer should

do the job, but the devil is in the detail, of

course. The Mach support website at www.

machsupport.com states the minimum

specifications required.

Note that running under Windows 7 is not

as simple as might first appear, and Win-

dows XP remains a good option. However;

Windows XP is no longer available for pur-

chase, and I would caution you against cop-

ies available on some of the popular web-

sites, as these may not pass the Microsoft

Advantage licence check. In addition, sup-

port for Windows XP is being withdrawn by

Microsoft, so that while computers with XP

will continue to run, there will be no further

updates, bug fixes or modifications. This is

not a serious problem at present, but you

should be aware that Windows 7 and 8 are

the systems which are currently supported

by Microsoft. There is no available informa-

tion about Mach3 running under Windows

8 at present.

This means that if you are building or buy-

ing a new computer, you may have to use

Windows 7. We will tackle the challenges in

doing this, because it is the likely route for

many of us.

Some laptops will cope with Mach3, but

note carefully that MachSupport does not

actually recommend a laptop except when

using what’s termed an “external motion

controller”.

Core requirements for Mach3 are for a par-

allel printer port, and the use of a non-inte-

grated video controller.

The parallel port has long been the favoured

way to get enough signals out of, and into,

the computer, so that the cable running

from the parallel port to the electronics in

the CNC machine sends signals to the drive

electronics, and receives signals from sen-

sors on the machine. Most modern laptops

discontinued the use of the parallel port

some time ago, and it has largely been super-

seded by the USB port and the network port

on most laptops and desktops. USB convert-

ers are available, but need careful choice as

users report that many of these do not work

as well as is required for Mach3 and other

CNC programs, possibly because they do

not send a full range of signals through the

connectors. However; using a Motion Con-

troller solves this problem (see later section).

The motherboards of many computers have

built-in electronics for a video interface

(termed the graphics “card” or video “card”

for historic reasons) to send signals to a

monitor. Most off-the-shelf low or medium-

priced computers will have on-board inte-

grated video, because it is a cheap way for a

manufacturer to provide video outputs on a

complete computer. The problem with this

is that integrated video tends to interfere

with some functions of the operation of the

kernel and makes life difficult for Mach3. The

recommendation is that integrated video is

disabled, and a separate video card is used

instead. In this context, a “card” is a separate

circuit board which is inserted into a “slot”

or connector on the main computer moth-

erboard. This allows the kernel to pass a lot

of the work involved in preparing signals for

a monitor to the graphics/video card which

will contain its own processor and memory

to relieve the kernel of much of this task. This

aids the stability of Mach3 signals to a CNC

machine. Laptops generally have integrated

video and few have the extra “slots” required

for additional cards. Experience suggests

that laptops do work with Mach3, but it’s a

hit or miss, and Mach support recommends

you do not use a laptop, for the simple rea-

son that if a specific laptop does not work

﻿  •  9

with Mach3, there are no real options except

to use a different make or model of laptop.

There is lots of discussion on this on the

various forums, and some pointers to the

outcome of the discussions on the sup-

port website for this series of articles (www.

CNCintheworkshop.com).

The speed and memory requirements for

Mach3 are very low by modern standards,

so even an older computer is likely to satisfy

those requirements.

The computer running my mill is dedicated

to that task and is built into the cabinet

for the mill. It comprises an ASUS P4P800E

motherboard (now obsolete) with 8Gb ram,

a separate video card and a separate card for

the parallel printer port. This is much more

memory than is required, of course, but

effectively means there is no practical limit

on what I can do with the machine, for CNC

tasks involving Mach3 or other control soft-

ware I use. When not using Mach3, I can also

run other CAD and CAM programmes with

ease, and simultaneously, if I wish. I tend not

to do that, preferring to run them on a sepa-

rate machine, elsewhere; but the capability

is there, for a small additional cost. The com-

puter is built into a rack mount box (photo

11), and has two removable hard disk drives

so that I can swap from Windows to Linux

and from one version of Windows to anoth-

er. Totally unnecessary, but quite handy.

JITTER AND LATENCY

All computers are not the same, and differ-

ent models of motherboards vary in per-

formance. The issue is the extent to which

Mach3 can send out signals in near-real-

time. Latency refers to the time delay intro-

duced as signals pass through a system. A

slight delay may cause an error in position-

ing the cutting tool. Where latency is con-

stant, some of its effects can be offset.

Jitter, on the other hand, is a much more

serious problem because it is the variation

in the rate of signals in what is supposed

to be a constant stream. Unlike latency, jit-

ter varies over time, so is less predictable. In

machining, jitter can affect surface finish, as

the slides speed up and slow down when

they are supposed to be moving at a con-

stant speed.

Latency is related to jitter, but while latency

might be fairly constant, meaning the delays

are relatively constant and the whole pro-

gram (or sections of it) just send out signals

a bit late, jitter refers to the extent to which

individual signals in a stream vary from a

uniform rate, resulting in one signal hav-

ing a different latency than the next, in an

unpredictable way.

Measurements show clearly that there is

considerable variation in latency and jitter

from one model of computer to another.

This is important, so we will return to this

when we deal with setting up Mach3 and

the stepper driver hardware.

INTERFACES

The computer needs to control the stepper

motors or servos, and it does this by send-

ing a set of signals which normally take the

form of a train of pulses to control the steps,

and a signal to control the direction. These

are normally referred to as step-direction

signals. The signals coming from the com-

puter have no real power, and are at a much

lower voltage than the steppers require.

In addition, the steppers actually require

something more complex than a train of

pulses, because the coils inside the step-

per motor need to be turned on and off in

a particular sequence. So; we need to send

the step and direction signals from the com-

puter to some drive electronics (the stepper

controller) which generate the appropriate

sequence of signals to the stepper coils by

taking account of the direction in which the

stepper has to turn, and alter voltage and

current levels to make the stepper motor

turn (fig 4).

Connect one side of the drive electronics

to the computer, the other side to a step-

per motor, and feed the power supply to

the drive electronics. Step and direction

signals from the computer are turned into

appropriate high voltage and high current

signals which are fed to the stepper motor

to make it turn in sympathy with the step

and direction signals. Easy really, if you are

an electronics engineer; a useful black box if

you are an ordinary mortal.

Some folks recommend that the computer

is connected to a breakout board. There are

some good reasons for this:

•	 a breakout board gives some protec-

tion to the computer, by isolating the

computer’s outputs and inputs from the

Controller
(drive electronics)

Power supply

Signals from computer
(STEP and DIRECTION)

Stepper
motor

ST
EP

D
IR

EC
TI

O
N

Photo 11: Mill computer.

Fig 4: The controller contains the drive electronics.

10  •  ﻿

higher voltages used to drive the step-

per motors or servos.

•	 a breakout board can simplify the physi-

cal connections between the printer

port and the stepper/servo drive elec-

tronics. This was the original meaning of

the term “breakout”, where the connec-

tions for the various signals associated

with the parallel port can be made on

larger, more human-friendly connectors

on the breakout board. If soldering is not

your forte, this is a significant simplifica-

tion, as most connections can be made

using screw-down connectors.

•	 some breakout boards provide addi-

tional safety features, notably a charge

pump. When Mach3 runs, it can be

instructed to send out a continuous

stream of pulses and the charge pump

will allow the breakout board to operate

while it is receiving those pulses. If the

pulses from Mach3 stop, the breakout

board will recognise this as a fault and

will stop sending out signals to the step-

per drive electronics, effectively stop-

ping the machine.

•	 some breakout boards provide relay

outputs for switching things like cool-

ant pumps or vacuum extractors. This

can be done without a breakout board,

but, again, it is conveniently done using

the handy connectors on the board.

•	 some breakout boards simulate a sec-

ond parallel port or a dedicated port for

an external motion controller. This can

be important.

•	 some breakout boards incorporate

a speed controller so that Mach3

can not only turn on the motor for

the mill spindle, but can control its

speed. This is a very useful facility.

Fig 5 shows the signal path through a typical

breakout board.

There are, however, some reasons not to use

a breakout board. There have been some

complaints that some breakout boards

introduce a delay in processing the signals

from the computer before onward transmis-

sion to the drive electronics (i.e. they have

built-in latency). Buying a breakout board

from abroad is not a great problem via the

internet, to be sure, but postage and import

taxes add considerably to the cost.

MOTION CONTROLLERS

In recent times, new devices called motion

controllers have appeared (photo 12), and

these solve two significant problems. The

first is jitter, and the second is the problem

of increasing numbers of computers which

do not have parallel printer ports.

They also solve the problem of computer

performance and processor speed limiting

the performance of a CNC machine.

On a Windows computer running Mach3, a

good motion controller largely eliminates

jitter, and sidesteps the issues related to the

speed at which the computer can send sig-

nals out of the parallel port by eliminating

it entirely and acting as a substitute for the

parallel port. Some motion controllers are

mounted internally, inside the computer, as

plug in cards, but the most popular choice

for Mach3 is an external motion controller

which connects to the computer via the

USB port. This provides an ideal solution for

a laptop.

The computer sends signals out of the

USB port to the motion controller, and the

motion controller sends signals to the step-

per/servo drive electronics. Because the

motion controller deals only with creating

and sending the appropriate signals to the

drive electronics, it can do this in real time, at

high speed, bringing significant benefits. On

the computer, the OS and the kernel attempt

to deal with lots of other tasks at the same

time, to move information around the com-

puter, deal with the keyboard and a host of

other tasks, which introduces unwanted and

variable delays leading to jitter, and tends to

slow the operation of Mach3. This limits the

speed of machining, and means that the

motion of the axes tends to be slightly vari-

able, and the results of that may be visible in

the surface finish as the feedrate of the tool

varies slightly.

Fig 6 (next page)shows how signals are rout-

ed from the computer through the motion

controller to the stepper motors or servos.

A Motion Controller like the SmoothStepper

comes with a driver which is easily installed

on the computer. That redirects signals

from Mach3 intended for the parallel port,

and sends corresponding signals to the

SmoothStepper via the computer’s USB

port. Although these are a recent develop-

ment, motion controllers provide an effec-

tive way of controlling a CNC machine. It’s a

good solution.

Some breakout boards combine the best of

both worlds as they now incorporate ports

designed for connection to a motion con-

troller. This allows the breakout board to

Signals from computer
(STEP and DIRECTION)
(other control signals)

ST
EP

D
IR

EC
TI

O
N

Pulse train
from computer

charge
pump

CO
N

TR
O

L

ST
EP

D
IR

EC
TI

O
N

relays speed
control

To
 s

pi
nd

le
m

ot
or

 c
on

tr
ol

Br
ea

ko
ut

 b
oa

rd
Fig 5: The signal path through a typical breakout

board.

Photo 12: SmoothStepper motion controller.

﻿  •  11

offer additional connectors for relays etc. Fig

19 shows the signal path when using both

a motion controller and a breakout board.

SOFTWARE

The primary requirement is for software to

take instructions required to move the Con-

trolled Point along a particular path and

turn those into electronic signals for stepper

motors. That’s Mach3.

If that is the only software package you use,

you will be able to do quite a lot of fairly

straightforward CNC machining on a wide

range of workpieces. If you are a good pro-

grammer, you will be able to do a bit more,

but there are limits, and Mach3 on its own is

not enough to really make the most of CNC

machining in the home workshop.

In a full CNC system, there are three kinds

of software.

CAD software

Computer-aided design (CAD) software

is used to create a design in 2 or 3 dimen-

sions. All workpieces in the real world are 3

dimensional, but many machining opera-

tions mainly involve movements of the Con-

trolled Point in 2 dimensions, so although

many modern CAD programs can produce

designs in 3D, this is not helpful for most

milling operations, because the format of

the data (information in computer-readable

form) from 2D and 3D designs is fundamen-

tally different, which causes problems in

later stages of the process when the data is

translated into movements of the slides.

Movements in 2 dimensions (usually X and

Y movements of the slides) combined with a

vertical depth of cut are termed 2D because

once the cutter has reached its depth of cut,

that does not vary, and there are no simul-

taneous co-ordinated movements of X and

Z or Y and Z. Where the depth of cut is var-

ied as X and Y movements take place, this is

Computer

USB

Motion Controller

Parallel
port 2

Parallel
port 1

Signals out
to stepper drive

electronics,
and in

from sensors

Signals in & out
to additional devices

such as pendants,
other steppers
or accessories

Po
rt

 3 Signals in
from encoders
or other devices

Computer

USB

Motion Controller

Parallel
port 2

Parallel
port 1

Signals out
to stepper drive
electronics, and
in from sensors

Signals in & out
to additional devices

such as pendants,
other steppers
or accessories

Breakout
board

Po
rt

 3 Signals in
from encoders
or other devices

Fig 6: Signals may be

routed from the computer

through the motion

controller to the stepper

motors or servos.

Fig 7: The signal path

when using both a motion

controller and a breakout

board.

12  •  ﻿

termed 2½D and this allows the creation of

“low-relief” shapes which can be thought of

as a kind of restricted 3D because it allows,

say, a flat map of a landscape to be pro-

duced, with X and Y movements as well as

enough control over the Z axis to produce

the height-related features of the moun-

tains or the valleys and rivers. 2D machining

produces shapes with vertical sides to the

cuts, whereas 2½D machining can produce

pockets and raised areas on the work which

are not restricted to having vertical sides.

So 2D and 2½D machining covers the vast

majority of what is required in the home

workshop. True 3D machining is a rather

different animal, and is outwith the capa-

bility of home machinists, at present. How,

for example, could you machine a fully 3D

object? Imagine machining a sphere con-

taining a contoured map of the world, with

the mountains, continents, oceans and riv-

ers. How could you hold the workpiece so

that this could be done in one work setup?

How could you machine the “underside”?

The most likely practical solution on a con-

ventionally constructed mill would be to

use multiple work setups in which you set

up a block of material and machine part of it,

then change the position of the workpiece

and machine the next part, and so on. That

is not 3D machining; it is a series of 2½D

machining operations. We will deal with the

challenge of machining 3D objects, in this

series, but you should be aware that this will

involve techniques to allow 3D objects to be

created using 2D and 2½D machining tech-

niques on a conventional mill, and that will

involve specific work-arounds. In practice,

we will use 2D machining for lots of work-

pieces, and 2½D machining for the rest.

CAM software

Computer-aided Machining (CAM) software

is used to turn the features of a finished

design into a set of instructions for a CNC

machine tool. Normally, this will involve

working with information from a CAD pro-

gram, but the same process can be car-

ried out with a manually-created design,

although this is neither as convenient nor

as efficient, and anything other than the

simplest of shapes is better dealt with by

using CAD then CAM techniques. Because

the CAD and CAM stages of the process are

so closely linked, some programs combine

both functions, and some of the software we

will use in this series of articles do just that.

These are essentially CAM programs which

incorporate CAD capability. A dedicated

CAD program may have more sophisticated

drafting capability, but that is not always

required for designs of low or medium com-

plexity, so a combined CAD/CAM program is

a way of coping efficiently with the majority

of designs.

A CNC program then uses the output of

the CAM program to carry out machining

to produce the finished object. The output

of the CAM program needs to be prepared

differently for each specific CNC program,

so it is important that the CAM program has

that capability. The general nature of CAM

programs means most can output data in a

range of formats suitable for a correspond-

ing range of specific CNC programs. Because

Mach3 is such a widely used program, most

good CAM or CAD/CAM programs can out-

put data in the form required by Mach3. In

fact, most can output in more than one form

for Mach3, depending on how you, as the

user, want Mach3 to behave.

In the full CAD/CAM/CNC cycle, it is essen-

tial that the data passing between the pro-

grams used at each stage of the cycle is in

a form which each can recognise and use.

If you are using a separate CAD program,

for example, it needs to be able to output

finished designs in a standard format which

the following CAM program can read and

use. This is where most free or low cost CAD

programs fall down, and are not of practi-

cal use in a CAD/CAM/CNC system. The

basic requirement is that a CAD program

must be able to output data in a standard

DXF format. This is Autodesk’s longstand-

ing AutoCAD file format which has become

a universal standard. There are various ver-

sions of this, but most CAM programs can

cope with many of these, so this is the stand-

ard format we must look for. This also means

that you can take a DXF file from elsewhere,

such as one prepared by someone else, and

use it in your CAM program, allowing you to

machine an object using a file obtained from

elsewhere. This is important, as it means you

do not always need to design a workpiece

yourself, but can still machine the object.

Some CAM programs can also accept other

file formats for 2½D designs from other soft-

ware packages such as AutoCAD, RhinoCAD,

TurboCAD, and many others.

Combined CAD/CAM programs automati-

cally deal with data transfer, which takes

place inside the program with no need for

the user to do anything about this. That’s a

bonus, of course.

CAD software of considerable power is

available from a number of sources, in all

the usual forms: free, low-cost, and high-end

packages, so you can choose how capable

you want the software to be, whether you

want to design in 2 or 3 dimensions, and

how much you want to spend. As always,

you get what you pay for, but there are some

exceptions, with some good software avail-

able under the GNU or GPL General Public

Licence system.

There are some fundamental differences

between 2D and 3D design programs, and a

noticeable difference in the way you might

approach the design task if you are using

2D or 3D software. The current tendency,

industrially, is to use 3D software such as

AutoDesk’s Inventor or the 3D version of

the old favourite AutoCAD (which takes the

form of 3D capability within the basic 2D

AutoCAD), RhinoCAD 3D, TurboCAD 3D and

any of many others. These are hugely capa-

ble programs, but they come at a consider-

able cost, and they output files in a format

which not only differs from the standard 2D

﻿  •  13

formats but requires a different CAM pro-

gram to prepare for machining. We will con-

sider machining designs prepared in a 3D

CAD package separately, later. It’s an inter-

esting challenge but has its own particular

requirements.

CAM software has evolved over the years,

and most is now integrated as part of a

CAD/CAM package. Some high-end pack-

ages such as EdgeCAM are specifically tai-

lored to provide efficient machining paths

for the Controlled Point, and do that job very

well. Some low cost or free CAM packages

exist and are particularly useful for specific

machining tasks like milling circuit boards,

but, again, the tendency is to add CAM capa-

bility to existing design programs. GSimple

is a typical free CAM program, developed

by an enthusiast and quite capable within

specific limits. It cannot deal with DXF files

containing “blocks” for example. Nor can it

machine islands within pockets. For some

workpieces, those are serious limitations.

FreeMill is a free 3D milling package capa-

ble of importing 3D files in specific formats

such as VisualMILL, STL, Rhino .3dm, VRML

and Raw Triangle . It has been created by

a commercial company, but is provided

free using a well-known model in which

good software if provided free to (a) entice

you to pay for training, and (b) entice you

to upgrade to the full commercial product.

This works well for end-users who can read

the manuals and who do not need the full

commercial product.

However; the detail of what needs to be

done to make specific packages work with

Mach3 becomes rather complex, so, in this

series we will refer specifically to the soft-

ware by Vectric: Cut2D and VCarve Pro.

Cut2D has become popular in its own right,

and is also supplied with some proprietary

CNC mills such as the Sieg KX1 and KX3

Hobby Mills supplied by Arc Euro Trade.

Cut2D is best described as a CAM program

with some added CAD functionality. It is not

a full blown CAD program, but has enough

CAD functions to allow straightforward

2D designs to be created then turned into

instructions for Mach3 to produce the fin-

ished workpiece. It will also import existing

designs from a range of other CAD pro-

grams and drawing programs, in which case

it performs as a CAM program.

VCarve Pro is Cut2D’s big brother and con-

tains the same CAM functions but has a

wider range of CAD tools and additional

tools related to CAM tasks such as optimis-

ing part placement, dealing with machining

of cylindrical objects on a 4th axis, and a

wider range of engraving tools for text and

other functions. VCarve can use co-ordinat-

ed X, Y and Z movements to produce 3D

effects on the finished work, under specific

circumstances, although it is not a full 3D

machining program.

There is lots of support for these software

packages, and although they are widely

used by the woodworking fraternity with

gantry mills, they are quite capable of the

kinds of machining tasks undertaken on

conventional mills.

This is not a sales pitch for these particular

pieces of software, and you may be able to

achieve similar results from other software,

but, for the purposes of this series, these

are the packages we will use in some of

the examples. The series will not provide

detailed step-by-step instructions for using

the software for every single example,

because there are good manuals available.

Currently, a licence for Cut2D costs £95 +

VAT and a licence for VCarve Pro costs £395

+ VAT. Trial versions of both packages can be

downloaded free so that you can try them

before purchase. Trial versions will not allow

you to output code for Mach3, so you will

not be able to do any machining before

paying for a licence. Cut2D is very capable

and can be used for the majority of straight-

forward model making tasks. It’s relatively

low cost suggests it is an entry level pro-

gram designed not only to do a good job

but to entice the user to upgrade to VCarve

Pro, or to the much more expensive top of

the range Aspire. We will focus on Cut2D

for much of this series, but will make some

reference to the more advanced features of

VCarve Pro from time to time. And because

I am a code-head at heart, we will look at

some hand-coding too.

